
Information Technologies in Innovation Business (ITIB), 7-9 October, 2015, Kharkiv, Ukraine, Copyright: IEEE

978-1-5090-0234-4/15/$31.00 2015 IEEE, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7355058

MyWebRTC, a Free Do-It-Yourself Kit for Secure
Real-Time Internet-Communication

Tolkiehn G., Lebedev M., Makariti A.
Business Computing

TH Wildau
Wildau, Germany

Abstract— myWebRTC provides a basis for easy-to-use,
cross-platform, low-cost, secure, privately owned solutions for
real-time communication over the web. This may be particularly
useful in confidential healthcare communication, but as well in
many other branches and applications. WebRTC-based services
may comprise chat, video/audio-calls, file-transfer, desktop-
sharing and conferencing. Main features and implementation
details of the prototype are outlined. All sources of the solution
are available on GitHub. A demo-implementation is publicly
available online. The authors encourage derivation of individual
do-it-yourself systems as well as development of IT-service-
oriented business models providing professional solutions to
enterprises and authorities plus extensions for interoperability
with other solutions.

Keywords— WebRTC; open source; secure real-time
communication; business model; node.js

I. INTRODUCTION AND MOTIVATION
At the latest after the shock of the revelation of the mass-

surveillance by the NSA in 2013, everybody worries about
massive data collections by third parties. Massive data
collection is performed, however, not only by national
intelligence agencies, but also by Internet-Access- and Over-
the-Top service providers as part of their business models.
Today therefore, everybody is alarmed about possible
industrial espionage and other breaches of confidentiality in
internet communication.

As one consequence, enterprises and public authorities
tend to ban real time web services. This, however, reduces
user-friendliness and interferes with trends like “Bring Your
Own Device” and Homeworking.

In this setting and after more than 25 years of video
communication solutions with the ITU-T and IETF families of
standards as well as with several more or less proprietary
solutions and taking into account the vast number of users that
Skype, WhatsApp and other real-time services have gained,
the initiatives of Google [1], the World Wide Web Consortium
(W3C) [2] and the Internet Engineering Task Force (IETF) [3]
to implement secure browser-based peer-o-peer real time
communication over the web appeared attractive. In particular
the concepts of standardized, browser based peer-to-peer
media data transfer including a variety of standard codecs and
strong end-to-end encryption (DTLS-SRTP [4]) seemed
promising.

 Also the options for proven technology and standards for
the signaling plane (including handling of clients behind
firewalls), the ease of implementation using HTML5 and
JavaScript with a set of APIs and the future perspective of
support by all relevant browsers (presently Mozilla Firefox,
Google Chrome and Opera, Microsoft and Apple soon to
come) seemed favorable.

 Our interest in WebRTC was further encouraged by a
medium sized German enterprise, Estos GmbH, who already
in 2013 expressed their interest in cooperation on the subject
plus by the ever-growing importance of teleworking in many
fields, including e-health and university teaching.

II. REQUIREMENTS, AIMS AND METHOD OF OPERATION
Having had a look at a number of web services using

WebRTC available already in 2013 (e.g. bistri.me,
apprtc.appspot.com, palava.tv, go.estos.de, projectansible [5])
and regarding the perspective of Skype also moving to
WebRTC, we thought about an alternative approach. After
discussion we defined a number of requirements for a license-
free open source WebRTC-based solution aiming at usage in
enterprises, administrations and also universities as on-
premise systems owned by the users’ own organization.

The requirements were defined in the style of agile
development (epics and user stories). A Scrum-like approach
appeared favorable for our work, although the organizational
working conditions in a students’ project are not ideal (part-
time work with only 20% of full-time and only during the
lecture periods with ten weeks of semester break). However,
there was affirmative experience from earlier projects. One
main advantage of agile methods is the flexibility in adapting
technical innovation, moving targets, uncertainty, and
technical difficulties. The Scrum roles concept of product-
owner, team and scrum-master is also beneficial for largely
self-determined development as appropriate for semi-
professional master course students.

Regarding the limitations in time (two semesters) and
developers’ work-hours budget for development (480 hours of
graduate students) in combination with the necessary learning
curve, it was obvious, that we could not expect to be able to
provide a fully functional solution fit for productive operation.

Tolkiehn, G., Lebedev, M., Makariti, A.

 Information Technologies in Innovation Business (ITIB), 7-9 October, 2015, Kharkiv, Ukraine

The development goal was therefore restricted to a
working demonstrator solution with only some of the
appreciable features, lacking sophisticated usability, but
interesting enough for demonstration of the idea and
presentation on the CeBIT fair in Hannover, in March, 2015,
that is, within exactly one year after the start of work.

The product-backlog thus contained epics like

• “As a responsible manager, I want to provide
inexpensive, platform-independent and secure real
time communication for the members of my
organization and their communication partners”

• “As a user, I want to easily set up and close secure
real-time connections or conferences with my business
contacts on devices of my choice”

• “As a system administrator I want a slim, transparent,
standards-based system for easy and secure
implementation, operation and administration”

In the process of decomposition of the epics into user
stories (some of them in relation to special activities, like
remote medical care or tele-teaching) and tasks, a number of
choices had to be made. Our priorities for the communication
options supported by WebRTC were defined in the order

• Chat,

• Video/Audio Calls

• File-Transfer,

• Desktop-Sharing

• Multi-Conferencing

In parallel, a number of architectural and procedural
choices had to be made. Our strategy here was to be on the
one hand pragmatic and efficient, but at the same time to
remain as open as possible for alternative architectural
choices. We decided to use node.js as webserver, PHP and
MySQL for the user management. Not being familiar with
node.js we chose not to use PHP on node.js, but to implement
an additional Apache server, which is probably not the most
effective implementation.

For the system platform there is the choice between
different Microsoft and Linux versions as all components used
are platform-independent. We chose Microsoft Server 2008
for the reference implementation.

As our hardware platform we chose a stand-alone desktop
PC system in our lab with remote access as opposed to using a
virtual machine operated by the IT-department.

For the WebRTC server application software (HTML5 and
server side JavaScript) we used and adapted several code
examples from the publication of Johnston and Burnett [6],
which proved to be very helpful also in understanding the
APIs.

User management and administration (see also second epic
above) is not covered by the WebRTC standardization. In
productive systems, an adaptation to or import of parts of the

user-administration already present in every organization will
probably be the method of choice. But this was defined to be
out scope for our project. Here, this function was intentionally
kept simple and the development of solutions by experienced
teams is strongly encouraged.

Also, solutions for interoperability with other real-time
communication systems seem very interesting, but were not
yet considered in this first approach.

Most WebRTC-based business models so far offer free
basic communication services but do nontransparent
commercial evaluation and sales of user meta-data (like e.g.
google Hangouts) or even user content (like Skype). They may
additionally charge fees for gateway connection services or
premium communication services.

The business model approach for myWebRTC is different.
It does not rely on commercialization of any kind of user data.
Business models for myWebRTC may instead base upon paid
or “do-it-yourself” system integration, provision and system-
administration or -operation services. Solutions may consist of
license-free open source software alone or in combination or
connection with licensed software components.

III. FUNCTIONALITY OF THE DEMO-SYSTEM
The demonstrator system implemented for public use

contains the functions “chat” and “video/audio-
communication”. File-transfer was not implemented due to
lack of time and lower priority. Desktop-sharing was not
implemented due to an irritating turn in the concept of google
(they surprisingly announced to use a plug-in for this feature
in Chrome). We did not want to go for that. In fact the whole
community objected to this obvious violation of the overall
WebRTC strategy (no client software, no plug-ins, no add-
ons). After some time google dropped the idea again, but at
that point we could not resume work on this feature.

User-management is done by a MySQL database using
PHP. The data base contains the standing data of the registered
users and a number of state variables representing the current
status of the user (like online/offline). Out of development
performance reasons, the team decided against using PHP in
node.js and for a second web server (Apache) for this task.

The basic concept here is, to create one web page per
registered user and to open this page on login, say of user A.
User A’s status is thereby changed to “online” and the browser
will ask permission of the user to access camera and
microphone. If declined or not present, only chat will be
available. A will see the list of other registered users and their
online-status. This feature was specified imitating the well-
recognized GUI of Skype. User A may then attempt to call
one of the users with status “online”, say B, by clicking on the
“call” button.

Signaling of call attempts is done by polling the data base.
On receiving a call attempt, user B will be signaled by a sound
and an input field popping up, where he may choose to accept
or decline the connection request. There still are, however,
some flaws in this mechanism of our demo solution, so that up

myWebRTC, a Free Do-It-Yourself Kit for Secure Real-Time Internet-Communication

 Information Technologies in Innovation Business (ITIB), 7-9 October, 2015, Kharkiv, Ukraine

to now, neither the users’ online status nor call attempts are
properly notified.

Thus, for experiencing the chat and video-call functions,
users are up to now restricted to a more primitive approach
using the button “Demo Version”, where the user management
is not engaged.

Here, the browser will ask permission to access camera and
microphone. The users may then enter an arbitrary code into
the input field “key”. If the codes entered by two users at
approximately the same time (timeout is 100 seconds) match,
both will be asked to accept the connection and on acceptance
be connected. For another connection, a new code has to be
used. Old codes will be marked “used” for a day.

This very simple form of connecting works on any device
using the specified browsers. There is, however, one exception
for iPad. Here, video/audio with Chrome or Firefox apps will
not work, the reason being that iPad so far does not permit the
browser-Apps of the competitors to access the device’s camera
or microphone data. These browser apps will therefore not ask
for such permission. So far however, this exception is not
handled as refusal of audio and video access by the user, so
that on iPad chat will not be available either.

Another restriction, related to NAPT of mobile ISPs will be
mentioned below. Although this primitive functionality is
hardly useful for everyday work, connection is so surprisingly
universal, simple and effective for people familiar with other
video-call systems, that most visitors of our CeBIT exhibit
were deeply impressed, in particular about the fact that they
could not only connect to one of our laptops in the exhibit, but
also between two visitors.

The sources of myWebRTC have been available on GitHub
[7] for public free use since May 2015.

IV. CLIENTS BEHIND FIREWALLS AND NAT-ROUTERS
While media data are preferably passed directly from

browser to browser once a session is established, WebRTC
clients need an intermediate server for metadata signaling and
session management. Here WebRTC allows for different
signaling protocols like e.g. SIP or Jingle as outlined in the
JavaScript Session Establishment Protocol JSEP [8]. One
important issue for web-based peer-to-peer communication
today, well known already from IP-telephony, is that still most
clients use IPv4 and the majority of client systems reside in
local area networks behind firewalls and routers doing
Network Address Translation (NAT). These systems cannot be
accessed using their local IP-addresses because these addresses
are non-routable. The WebRTC standard comprises the option
of using Interactive Connectivity Establishment (ICE [9])
servers to overcome this complication.

Here, two different functions are used. One is, to use a
server which supports Session Traversal Utilities for NAT
(STUN [10]). Such a server will on request deliver the routable
IP-address and port number by which the client accesses the
internet. These external client data then may be transferred to
the session management subsystem for connection

establishment and used for peer-to-peer transmission of media
data.

A private STUN server may easily be provided by the
owner of a myWebRTC-system. It may run on the same
machine as node.js and user administration. Still, for our demo
system, we used one of the publicly available STUN servers.

Sometimes, however, this simple procedure will not be
effective to allow connection setup and peer-to-peer data
transmission, because firewalls do not allow pinholing at all or
for extended time periods or out of other reasons. In such cases
a server for Traversal Using Relay NAT (TURN [11]) may be
employed technically avoiding peer-to-peer communication.
Also a TURN server may be implemented and employed by
the owner of a myWebRTC solution, but is not included.

While there are also public TURN servers available which
automatically offer TURN for relaying media data in case the
STUN approach alone fails, we did not include one of these in
the myWebRTC code either. The reason is that relaying media
data through an external server constitutes a severe security
hazard and also an additional central point of failure.

The drawback of this precaution is that connection
establishment will fail in some cases. On WLAN or wired
internet this scarcely happened (depending on the firewall used
for the client), but clients using mobile carriers for internet
access will regularly fail to connect without using a relay
server. For relaying however, sufficient internet bandwidth and
also system performance for all relayed connections has to be
provided.

However, even the use of only a public STUN server
discloses all of the metadata of your communications to the
operator of this server. Therefore, our recommendation for
future implementations of myWebRTC-like solutions is to set
up your own servers for ICE, including relaying, in a
controlled environment in addition to the servers for WebRTC
and user administration.

V. CONCLUSION AND PERSPECTIVE
We think that our demo application may be helpful for

organizations to establish their own experience and implement
their own custom solution for secure communication (do-it-
yourself approach) within a clear range of development and
test effort.

It may also encourage IT-companies to establish new offers
of solutions (not services) for secure real time communication
based on free open source components, but not necessarily
being completely open source and free of licenses. One such
product development is presently under way in a German small
or medium sized enterprise (SME).

myWebRTC as an open source starting point seems also
well entitled for further development of both additional
functionality and better design and quality. Such developments
may also be performed in co-operations of enterprises with IT-
specialists and students from universities as presently being
established in our IHSITOP [12] project.

Tolkiehn, G., Lebedev, M., Makariti, A.

 Information Technologies in Innovation Business (ITIB), 7-9 October, 2015, Kharkiv, Ukraine

Except debugging and redesigning the user management
and finding suitable ways to connect to existing user
management systems, two issues of particular interest for
myWebRTC will certainly be the accomplishment of
interoperability with

• other WebRTC systems

• telephony and other real-time communication systems
and services already established in the market.

A number of different ideas have already been discussed in
this area [13], [14]. Several German SMEs have so far
expressed their interest in co-operation on these issues.

Another area of general concern and future research,
which, however, cannot be outlined here in detail, will
obviously be security issues of WebRTC solutions in general
and in particular of the relatively new node.js technology.

WebRTC technology appears well prepared to impede
confidentiality breaches of the media streams. However, it
does not provide measures against other general security
issues, like unwanted collection of meta-data by third parties,
hacking or Denial-of-Service (DoS) attacks are another story.

Unlike in private or general business communication, there
are real time applications like in health-care or in search and
rescue, where communication breakdowns may cause safety
risks. Service availability will therefore be of special
importance in these fields, not only for commercial reasons.
Reliable Internet access with sufficient quality of service and
prevention of DoS and other attacks on service availability will
be issues of special interest in these application fields.

ACKNOWLEDGEMENT
The authors would like to thank Susanne Koczoh for her

technical and administrational support during the whole
project.

References
[1] http://webrtc.org
[2] http://www.w3.org/TR/webrtc/
[3] https://tools.ietf.org/html/draft-ietf-rtcweb-overview-14
[4] IETF RFC 5764: https://tools.ietf.org/html/rfc5764
[5] In 2015 renamed to https://www.circuit.com
[6] Johnston, A.B., Burnett D.C., WebRTC: APIs and Protocols of the

HTML5 Real-Time Web, Digital Codex LLC, St. Louis, 2014.
[7] http://github.com/mywebrtc/code
[8] http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-11
[9] IETF RFC 2545: https://tools.ietf.org/html/rfc5245
[10] IETF RFC 5389: https://tools.ietf.org/html/rfc5389
[11] IETF RFC 5766: https://tools.ietf.org/html/rfc5766
[12] https://ostpcen.wordpress.com/tempus-project-ihsitop/
[13] http://www.webrtcworld.com/topics/from-the-experts/articles/383883-

sip-universal-restricted-with-webrtc.htm
[14] http://matrix.org/blog/wp-content/uploads/2014/11/2014-11-03-

Matrix_Missing-Link_IOT.pdf

